Table 1: Nutrients/bioactive food compounds of interest and putative biomarkers for bioavailability & bioactivity endpoints

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Biomarker for bioavailability</th>
<th>Molecules/Mechanism disturbed with deficiency</th>
<th>Health impact</th>
<th>Biomarkers of Health and Disease</th>
<th>Model Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary Fiber</td>
<td></td>
<td>Digestive health</td>
<td>Cancer, inflammation IBD Obesity Type II Diabetes</td>
<td>Short chain-fatty acids Gut permeability Mucus thickness</td>
<td>Rodent Humans</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca levels Ca kinetics Bone mineral turnover PTH hormone levels</td>
<td>PTH hormone levels Loss of bone Shifts in microbiota</td>
<td>Osteoporosis Kidney Failure</td>
<td>Bone density MicroCT (bone architecture)</td>
<td>Rodent Human</td>
</tr>
<tr>
<td>Potassium</td>
<td>K kinetics</td>
<td>Rise in blood pressure, Lower BMD Higher NAE</td>
<td>Hypertension</td>
<td>Blood pressure Bone density</td>
<td>Rodent Human</td>
</tr>
<tr>
<td>Iron</td>
<td>Hemoglobin, serum/plasma ferritin and soluble transferrin receptor, transferrin saturation, hepatic iron concentrations</td>
<td>Hemoglobin serum/plasma Ferritin, Soluble transferrin receptor, transferrin saturation,</td>
<td>Anemia, Risk of infection, immune competence, growth, neurodegeneration,</td>
<td>Hemoglobin, hematocrit, inflammatory cytokines, Hapcidin, acute phase proteins</td>
<td>Rodent Chicken Human Pig</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Vitamin A levels Serum/plasma retinol</td>
<td>Night vision, plasma cholesterol, immune function</td>
<td>Obesity, CVD, blindness</td>
<td>Adiposity, atherosclerosis, function of the visual cycle</td>
<td>Rodent Human</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zinc levels</td>
<td>Immune function DNA integrity microbiome Bone turnover balance</td>
<td>Infection susceptibility Inflammation Cancer Osteoporosis</td>
<td>Inflammatory markers/cytokines Oxidative stress DNA damage</td>
<td>In vitro Rodent Zebrafish Human Chicken</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>Vitamin D3 levels 25(OH) vitamin D3</td>
<td>Ca homeostasis Loss of bone Bone turnover balance Albuminuria Bone turnover - release of Pb</td>
<td>Osteoporosis Kidney failure Higher circulating Pb concentrations, adverse birth outcome risk</td>
<td>Bone density MicroCT (bone architecture) Serum Pb concentrations</td>
<td>Rodent Human</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Vitamin E & metabolite levels</td>
<td>Oxidative stress, inflammation, and systemic vitamin E trafficking</td>
<td>Nonalcoholic Steatohepatitis Cancer Vascular Dysfunction Osteoporosis</td>
<td>Oxidative stress Inflammation markers Fatty liver pathology Pharmacokinetics *studies done in animals and translational work in humans</td>
<td>In vitro digestion system Rodents Humans</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>Phyloquinone in plasma and lipoproteins</td>
<td>gamma-carboxylation of proteins, vascular calcification, bone mineralization</td>
<td>cardiovascular health, bone health</td>
<td>pharmacokinetic studies in humans; interaction of food matrix on bioavailability</td>
<td>Humans Rodents</td>
</tr>
<tr>
<td>Folate</td>
<td>C-14-folate & metabolites Polymorphisms Homocysteine Methyl Pool Plasma and RBC folate</td>
<td>Epigenetic alterations Methylation changes DNA damage</td>
<td>Cancer Heart Disease NTD Anemia</td>
<td>Homocysteine accumulation Methyl-pool alterations DNA damage Increased cancer risk</td>
<td>In vitro Human</td>
</tr>
</tbody>
</table>
| B₁₂ | B₁₂ levels
TCII saturation
Methylmalonic acid | Epigenetic alterations
Methylation changes
DNA damage | Cancer
Heart Disease
Cognition
Anemia
Demyelination disease | Homocysteine
accumulation
Methyl-pool alterations
DNA damage
Increased cancer risk
Memory tests | In vitro
Human |
| --- | --- | --- | --- | --- | --- |
| Bioactive lipids | Lipid oxidative products,
Bioaccessibility,
sphingolipids | Oxidative stress,
inflammation,
adipogenesis | Inflammatory diseases,
obesity | Inflammatory markers,
total fat accumulation | In vitro,
C. elegans,
Drosophila,
humans,
rodents |
| Essential Amino Acids | Lysine,
Methionine | Protein Biosynthesis | Protein deficiency | Cognition,
disease resistance,
Animal feeding for
protein efficiency |
| Dietary exosomes and their RNA and protein cargos | Foreign RNAs in
plasma; plasma and urine
metabolites (purines); mixed
lymphocyte reaction;
activation of Toll-like receptors | Cognition (loss of
learning, increased
seizure activity); gut
inflammation, fertility and
postnatal growth | Cognition;
fertility;
inflammation | Plasma cytokines,
plasma microRNAs,
gut microbiome,
cognitive performance,
aberrant plasma and
urine levels of purine
metabolites | Humans,
mice; gut bacteria |
| Soy isoflavones | Isoflavone metabolite levels | Estrogen metabolism
Anti-inflammatory
perturbations
microbiota | Bone health
Cancer
Heart Disease | Bone density
MicroCT (bone
architecture)
Inflammatory markers
*studies done in
animals and
translational work in
humans | Rodents
Humans
Chicken |
| Green tea catechins | Catechins and host- and
microbiota-derived
metabolites | Gut-liver inflammatory and
oxidative stress responses; adipogenesis | Heart Disease
Nonalcoholic
Steatohepatitis
Obesity
Cancer
Cognition
Bone health | Inflammatory markers
Oxidative stress
Fatty liver pathology
Cancer risk
Lipid accumulation
*studies done in
animals and
translational work in
humans | Ex vivo
fermentation,
C. elegans,
Rodents
Humans
Chicken |
| Isothiocyanates | Isothiocyanate &
metabolite levels | Epigenetic alterations
Altered detoxification
Oxidative stress
microbiota | Cancer
Cancer
Epigenetic changes
Detoxification pathways
Cancer risk/incidence
Oxidative stress
*studies done in cells,
animals and
translational work in
humans | In vitro
Rodent
Human |
| Indole-3-carbinol | Metabolite | adipogenesis, immune
regulation, gut
permeability, microbiota | obesity,
testinal inflammation, type 1
diabetes | Total fat
accumulation; intestinal
permeability
T cell differentiation,
macrophage
polarization, bacterial
dysbiosis | C. elegans,
Drosophila,
Rodent |
| Stilbenoids | Resveratrol,
piceatannol | Adipogenesis, aging,
antioxidative responses | Obesity, aging | Total fat
accumulation, lifespan | C. elegans |
| Anthocyanins and Phenolic acids | Levels of anthocyanins and
metabolites | Inflammation, Oxidative Stress,
inulin signaling pathways, adipocyte
differentiation
Angiogenesis
Vascularization | Obesity
Inflammation
CVD
cancer
Acute and chronic
wounds | Inflammation
Oxidative stress
Cardiovascular perturbations | In vitro
Rodent
Pigs
Rabbits
Chicken |
Table 2: Active and Planned Collaborative Studies

<table>
<thead>
<tr>
<th>Collaborative Studies</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption and metabolism modeling</td>
<td>NE, OH, OR, IA, IN, AZ, NY</td>
</tr>
<tr>
<td>Biomarker discovery, assessment measurements and validation</td>
<td>AZ, IL, OR, OH, OR, CA-B, IA, NY, CA-D, OK</td>
</tr>
<tr>
<td>Development of novel technological approaches and their applications</td>
<td>HI, IL, KS, MA, NE, OR, OH, MT, NJ, MO, IA, IN, FL, NY, ME</td>
</tr>
<tr>
<td>Model organisms</td>
<td>KS, NE, OR, CAB, AZ, NY, HI, OK</td>
</tr>
<tr>
<td>Animal models</td>
<td>HI, IL, MA, KS, NE, OR, OH, CA-B, CT, CA-D, PA*, AZ, IN, NY, ME</td>
</tr>
<tr>
<td>Human and population-based studies</td>
<td>IL, KS, NE, OR, OH, CA-B, OK, MT, IA, IN, FL, CT, AZ, RI</td>
</tr>
<tr>
<td>Microbiome studies/gut health</td>
<td>NE, OR, OH, IN, AZ, IN, MT, NY, CA-D, OK, CT</td>
</tr>
<tr>
<td>Susceptibility factors (age, sex, race, disease, environment, gene interactions)</td>
<td>OR, OH, CA-B, OK, IA, IN, RI, AZ, CA-D, CT</td>
</tr>
<tr>
<td>Obesity</td>
<td>CT, ME, AZ, IL, OH, HI, OR, OK</td>
</tr>
<tr>
<td>Maternal Obesity</td>
<td>NE, OK</td>
</tr>
</tbody>
</table>

Wound closure

IBD (UC)

Adipocyte growth/differentiation
Insulin resistance
Impaired glucose tolerance
Gut barrier function
Bacterial dysbiosis
Mucosal immunity

Nitrate and nitrite
Nitric oxide, nitrosothiols, nitroalkenes, nitroamines
Vascular function, blood pressure, efficiency of muscle contraction
CVD risk, chronic kidney disease risk, cognition
Endothelial dysfunction, increased blood pressure, reduced endurance upon physical exertion
Rodents, Zebrafish

Ellagitannins and ellagic acid
Urolithins via gut microbial hydrolysis
Inflammation, oxidative stress, vascular function, blood pressure, efficiency of muscle contraction
CVD, obesity and cancer risk, cognition
Inflammatory markers, oxidative stress
Zebrafish

Egg and Dairy Proteins
N/A
Inflammation, oxidative stress, vascular function, blood pressure
CVD, diabetes, metabolic syndrome, gut health
Brachial artery flow-mediated dilation, oxidative stress, inflammation, cardiometabolic indices
Humans

Carotenoids
Carotenoid levels
Vision, plasma cholesterol, oxidative stress
age-related macular degeneration, CVD, mitochondrial function, inflammation, NAFLD
visual impairment, atherosclerosis, Rodents
Humans

Bean protein
Cellular biomarkers
Diabetes,
Diabetes, inflammation
Inflammatory markers, oxidative stress, lipid metabolism
Rodents
In vitro (Cell culture)

Fatty acids
Serum fatty acid concentrations
Bone turnover - release of Pb
Higher circulating Pb concentrations, adverse birth outcome risk
Serum Pb concentrations
Humans

<table>
<thead>
<tr>
<th>Nitrate and nitrite</th>
<th>Nitric oxide, nitrosothiols, nitroalkenes, nitroamines</th>
<th>Vascular function, blood pressure, efficiency of muscle contraction</th>
<th>CVD risk, chronic kidney disease risk, cognition</th>
<th>Endothelial dysfunction, increased blood pressure, reduced endurance upon physical exertion</th>
<th>Rodents, Zebrafish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellagitannins and ellagic acid</td>
<td>Urolithins via gut microbial hydrolysis</td>
<td>Inflammation, oxidative stress, vascular function, blood pressure, efficiency of muscle contraction</td>
<td>CVD, obesity and cancer risk, cognition</td>
<td>Inflammatory markers, oxidative stress</td>
<td>Zebrafish</td>
</tr>
<tr>
<td>Egg and Dairy Proteins</td>
<td>N/A</td>
<td>Inflammation, oxidative stress, vascular function, blood pressure</td>
<td>CVD, diabetes, metabolic syndrome, gut health</td>
<td>Brachial artery flow-mediated dilation, oxidative stress, inflammation, cardiometabolic indices</td>
<td>Humans</td>
</tr>
</tbody>
</table>
| Carotenoids | Carotenoid levels | Vision, plasma cholesterol, oxidative stress | age-related macular degeneration, CVD, mitochondrial function, inflammation, NAFLD | visual impairment, atherosclerosis | Rodents
Humans |
| Bean protein | Cellular biomarkers | Diabetes | Diabetes, inflammation | Inflammatory markers, oxidative stress, lipid metabolism | Rodents
In vitro (Cell culture) |
<p>| Fatty acids | Serum fatty acid concentrations | Bone turnover - release of Pb | Higher circulating Pb concentrations, adverse birth outcome risk | Serum Pb concentrations | Humans |</p>
<table>
<thead>
<tr>
<th>Station</th>
<th>PI</th>
<th>Special Research Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Teske, Jennifer Duca, Frank</td>
<td>Animal models, body composition, behavioral measures of sleep, physical activity, energy expenditure, feeding, brain site-specific microinfusion, molecular biology, qPCR, EEG and EMG, radiotelemetry. Environmental and genetic interactions in altering the gut microbiota and nutrient-sensing pathways of the intestine in obesity and diabetes.</td>
</tr>
<tr>
<td>CA-B</td>
<td>Shane, Barry</td>
<td>molecular biology, genomics, genetic variation, animal models, cellular and in vitro systems, human studies</td>
</tr>
<tr>
<td>CA-D</td>
<td>Ehrlich, Allison Liu, Yanhong Ji, Peng</td>
<td>Gnotobiotic mouse models, mucosal immunology (T cell differentiation, macrophage polarization), gut health, dietary indoles and aryl hydrocarbon receptor activation Antimicrobial resistance of food-borne bacteria, alternatives to antibiotics, feed-based health technologies to improve animal health. Micronutrient deficiency and excess and dietary bioactive compounds on neurodevelopment, gut health and host resilience to infections</td>
</tr>
<tr>
<td>CT</td>
<td>Lee, Ji-young Blesso, Christopher</td>
<td>Dysregulation of energy metabolism, chronic inflammation and dyslipidemia, lipid metabolism and inflammatory signaling pathways, molecular targets for liver fibrosis and fibrogenic pathway, epigenetic regulations Lipid metabolism and chronic inflammation, lipoprotein particle functionality, phospholipid/sphingolipid metabolism, cardiovascular disease, human studies, rodent models of disease</td>
</tr>
<tr>
<td>FL</td>
<td>Andrade, Juan</td>
<td>Sensors for biological and food matrices, nutrient and bioactive analysis, bioavailability and bioefficacy of nutrients, food product development, food fortification, encapsulation technologies, global food and nutrition security</td>
</tr>
<tr>
<td>HI</td>
<td>Ho, Kacie Yang, Jinzeng</td>
<td>Effect of pre-harvest conditions and processing on bioavailability of carotenoids, minerals, and polyphenols, colloidal emulsion-based delivery systems for enhancing carotenoid or polyphenol bioavailability Control of blood glucose in prediabetes models by papaya leaf and seaweed juice.</td>
</tr>
<tr>
<td>IL</td>
<td>Amengual, Jaume DeMejia, Elvira</td>
<td>Role of vitamin A, carotenoids, and other bioactive products in cardiovascular disease and obesity. Inflammation and immune function and its relationship with atherosclerosis. Bioactive peptides and proteins in foods, inflammation, markers of type 2 diabetes, cancer, and cardiovascular disease risk</td>
</tr>
<tr>
<td>IN</td>
<td>Reddivari, Lavanya</td>
<td>Bioavailability and bioactivity of dietary fibers and flavonoids (anthocyanins); structure function relationships; interaction of fibers, flavonoids and gut bacteria; complexification of fibers and flavonoids; intestinal inflammation (IBD); chemical-induced and genetic models of ulcerative colitis; germ-free and gnotobiotic mice models.</td>
</tr>
<tr>
<td>IA</td>
<td>White, Wendy S</td>
<td>Bioavailability and metabolism of carotenoids, including beta-carotene and lutein, use of stable isotopic tracers to measure bioefficacy of beta-carotene in humans, nutritional genomics, biofortification to combat vitamin A malnutrition.</td>
</tr>
<tr>
<td>KS</td>
<td>Lindshield, Brian</td>
<td>Micronutrient bioavailability, protein quality, food aid development and assessment, international agricultural development nutrition and health assessment</td>
</tr>
<tr>
<td>ME</td>
<td>Klimis-Zacas, Dorothy</td>
<td>Nutritional Physiology and Biochemistry, Nutrition and Vascular Function and Metabolism, Berry bioactives and their role on chronic disease (Cardiovascular, Hypertension, Metabolic Syndrome, Wounds). Development of transdermal nanocarriers for bioactive compound delivery.</td>
</tr>
</tbody>
</table>

The member at PA moved to Purdue University (IN)

Table 3. Resources
<table>
<thead>
<tr>
<th>MO</th>
<th>Gruen, Ingolf U</th>
<th>Analytical chemistry with applications in food composition, flavor chemistry and the influence of food ingredients on quality attributes of foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>Giroux, Michael</td>
<td>Plant breeding and cereal quality expertise. Bread, pasta, noodles, production and quality testing. Subject preference testing.</td>
</tr>
</tbody>
</table>
| NE | Natarajan, Sathish Kumar Yu, Jiuju Zempleni, Janos | Maternal obesity-induced Complications, Placental Lipid Metabolism, Bioactive Lipids, Bioactive Nutrients
Dietary exosome-like nanoparticles, chronic inflammation, NLRP3 inflammasome, obesity-related diseases
Bioavailability studies, drug delivery, exosome biology, gut microbiome, molecular biology, RNA biology, transgenic models, human studies |
| NY | Tako, Elad | Specialty fields: Fe and Zn bioavailability, Dietary bioactives, Animal models, Molecular biology, intestinal morphology, energetic status, microbiome. Essential micronutrients and dietary bioactives (including discovery) assessment by using a unique dual in vivo (Gallus gallus) system. Effects of dietary bioactives and physiological status (as obesity, mineral deficiencies) on intestinal functionality, morphology and microbiome, in vivo. |
| OH | Bruno, Richard | In vitro and animal models, flavonoids, polyphenols, vitamin E (alpha- and gamma-tocopherol) and metabolites, carotenoids, oxidative stress, inflammation, cardiometabolic disorders (metabolic syndrome, (pre)diabetes, nonalcoholic steatohepatitis, vascular endothelial function), human intervention studies |
| OK | Lin, Dingbo | Food biochemistry, egg lutein, egg xanthophylls, food bioactive compounds and chronic disease prevention - inflammation, diabetes, obesity, vitamin A and inflammation, maternal obesity and offspring health risk, epigenetics, precision nutrition and carotenoids metabolism, mitochondrial function and immunoregulation |
| OR | Ho, Emily Dallas, David Iwaniec, Urszula | Molecular biology, epigenetics, signal transduction, chemoprevention studies in cell culture, animal models (mouse, zebrafish), and humans; mineral metabolism and gene regulation (humans), nutrient/gene/epigene interactions, nutrient/environment interactions
Examine survival of pathogen-specific human milk immunoglobulins in the infant gut, toxic metabolites and gut inflammation, digestion and putrefaction via peptidomics, metabolomics, microbial sequencing and inflammatory protein analysis
Imaging (dual energy absorptiometry, microcomputed tomography, histomorphometry), animal models (mice, rats, monkeys), mineral metabolism, bone metabolism, adipose tissue, osteoimmunology, cancer metastasis |
| RI | Oaks, Brietta | Maternal micronutrient deficiencies, nutrient/environment interactions, human studies, dietary intake, multivariate modeling |