W4168: Environmental and Genetic Determinants of Seed Quality and Performance

(Multistate Research Project)

Status: Active

Homepage

The need, as indicated by stakeholders:


Our proposed goals are informed by our close working interaction with our stakeholders who produce and use high quality seeds in the generation of food, feed, biofuel, beverages, natural products, and fiber. They include all individuals and institutions, encompassing scientists in academic-, commercial- and government-sectors, agronomists, horticulturalists and extension agents, who ultimately deliver high-quality seeds and the associated, validated knowledge base to growers. Our stakeholders indicated the need for maintaining or increasing seed quality and asked for new traits that can be incorporated into existing crops. Likewise, they asked for development of new germplasm for novel agricultural endeavors. Our goals for the proposed project focus on developing a broad understanding of how developmental and environmental mechanisms affect seed quality. We then translate knowledge of how to assess and manipulate traits to enhance seed quality (and the criteria with which to measure it) for our stakeholders. An assessment of the existing multistate programs (see below) and the feedback from our stakeholders indicate that we are uniquely positioned to coordinate the necessary research and provide the needed information to our stakeholders. It is clear that a broad, systems-based approach, spanning the basic developmental mechanisms governing seed development, is necessary to understand processes that affect seed quality and how these processes are modified by environmental cues and stresses. We plan to capitalize on our basic knowledge and the use of new technologies (some of which have been generated by our members) to help increase seed quality and performance as demanded by the growers. The long-term goal of our multistate project is to help maintain the high standards and competitiveness of the U.S. seed industry for new and existing crops.


The importance of the work, and what the consequences are if it is not done:


U.S. agriculture depends heavily on seed quality to maintain its competitiveness. Our proposed project helps enhance quality and performance of seeds to meet the demands of U.S. agriculture. Poor seed quality causes yield reduction with associated economic consequences of reduced exports, higher food prices, and localized commodity shortages. Although seed quality as a concept is well defined for most familiar agronomic and horticultural crops, it is not one that is defined and applied evenly across all cultivated species. For example, biofuel crops and revegetation programs rely heavily on seeds of high physiological quality that can withstand adverse seedbed conditions, where establishment and survival of the seedlings is the most crucial step. Many of these species have innate dormancy that results in sporadic germination and establishment. Therefore, basic research is needed at the species level to develop the necessary knowledge base for all plant species including wild species, plants already in production or those that are under development for agricultural utilization. This information ensures that growers and producers have the best chance of providing a high quality product to the consumer. This research requires a systematic approach that can only be delivered by a broad and cooperative group of seed- and seedling-scientists. Our proposed multistate project is the only vehicle that can facilitate such research. We know of no other agency or organization that integrates the depth and breadth of expertise to tackle these goals with relevance to the large array of seed crops and species grown in the U.S. 


The technical feasibility of the research:


We have a proven history of carrying out cutting-edge research to develop new knowledge in seed development, seed quality, seed dormancy and germination, and stand establishment. The research proposed in this renewal request focuses on understanding how developmental and environmental mechanisms affect seed quality in various crop species (Objective 1). We will then translate this knowledge using existing and new technology to assess and manipulate traits to enhance seed quality for growers (Objective 2). Our results from genomic, genetic and proteomic approaches associated with Objective 1 will inform some of our practical approaches associated with Objective 2. However, there is already a body of knowledge available to carry out many of the activities associated with Objective 2. Furthermore, the technical feasibility of the research procedures necessary to undertake all activities is standard practice in the case of field-oriented research, or an extension of established principles in plant biology. We do not view these objectives as mutually exclusive, but rather synergistic, representing the continuum between basic and applied research in meeting stakeholder needs. We are one of the longest-running multistate working groups in the USDA, starting as a Regional project in the early 1980’s. Our members are internationally recognized authorities on seed science as demonstrated by our publications, and scientific- and outreach-focused activities described below. We have a proven record of carrying out collaborative research within the present multistate project group and with other cross-disciplinary groups. Given the breadth of expertise and research productivity of the proposed project members (see Attachments), we are confident that we can achieve the proposed objectives fully.


The advantages of doing the work as a multistate effort:


Utilizing a multistate effort by drawing on the expertise of specialized research scientists across many states is the most efficient approach to addressing seed quality on a national level. Although the current multistate project was initiated in the Western Region (1983), the diversity of seed production throughout the U.S. and the lack of any other regional project devoted to seed biology or technology prompted us to expand our research and recruitment efforts to seed biologists at a national level during the recent iterations of the project. In fact, our project has played a critical role in coordinating a diversity of seed biology projects throughout the U.S. Furthermore, due to the comprehensive nature of the objectives, it is essential that we are able to examine seed biology from diverse perspectives, from the molecular to the whole plant level, thereby allowing clarification of the entire biological spectrum and development of specific applications. Therefore, such an approach requires participation of experts at each of these many different levels of focus and with a diversity of contacts for outreach who can help carry out the mission and goals of the project.


An integral aspect of our project is the need to train the next generation of seed scientists and technologists considering the documented decline in the number of seed scientists graduating from land-grant universities in this country. Many of this dwindling number of seed scientists are tasked with educating the next generation at these institutions. Therefore, we face an ever-decreasing number of seed scientists who are trained to educate the next generation (TeKrony, 2006). Seed industries also require continuing university research and the training of seed scientists by land-grant institutions to help them address complex seed physiology problems that impact product development and therefore profitability. The proposed multistate project will continue our current work of integrating the individual activities of our members with all information gained from current state programs across the wide range of species to address problems faced by seed producers and users nationwide. As has been the case in the past, the proposed multistate project will serve as a mechanism to unify seed science research across the U.S. 


What the likely impacts will be from successfully completing the work:


We project the development of solutions that provide an abundant supply of high quality seeds for agriculture as means of maintaining and improving food security for the United States. We will generate new fundamental knowledge about mechanisms underlying seed development, germination, dormancy and storability. We will help increase the seed scientist’s ability to increase seed performance. Other expected outcomes will include increasing the efficiency of food production to preserve environmental quality and further utilization of advanced technologies in seed production. Our project will also contribute to a clearer understanding of how environmental factors affect seed performance in natural and agricultural ecosystems, information which is needed to ensure the continued vitality of native plant populations and the productivity of cropping systems. Finally, our proposed work will provide not only an increased understanding of the factors that influence seed biology, but also practical methods to improve seed performance in the field, both of which are subjects important to the training of the next generation of seed scientists.

Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.