OLD S1077: Enhancing Microbial Food Safety by Risk Analysis

(Multistate Research Project)

Status: Inactive/Terminating

Homepage

The Centers for Disease Control and Prevention (CDC) estimates that one in six Americans becomes sick each year from eating contaminated food, with about 48 million cases of foodborne illness, 128,000 hospitalizations, and 3,000 deaths occurring each year from foodborne pathogens in the U.S. (Scallan et al., 2011). Norovirus is the leading cause of foodborne illness cases in the U.S., accounting for 5.5 million annual cases (58%), followed by non-typhoidal Salmonella (1.0 million, 11%), Clostridium perfringens (1.0 million, 10%), and Campylobacter spp. (0.8 million, 9%). The USDA Economic Research Service estimates that the economic burden of 15 leading foodborne illness acquired in the U.S. is $15.5 billion. Salmonella, Toxoplasma gondii, Listeria monocytogenes, norovirus, and Campylobacter are the top 5 contributors, costing $3.6, 3.3, 2.8, 2.3, and 1.9 annual billion, respectively (Hoffmann et al., 2015). Poultry, complex foods, pork, produce, and beef rank as the top five food commodities most commonly implicated in foodborne illness, with Campylobacter-poultry, T. gondii-pork, L. monocytogenes-deli meats, Salmonella-poultry, and L. monocytogenes-dairy as the leading the pathogen-food combinations with the highest cost of illness burden (Batz et al., 2012).


 


The long-term goal of this project is to perform comprehensive and integrative risk-based research, education, and outreach to improve food safety and advance public health. The project establishes multi- and trans-disciplinary teams of academics, food producers/processors, retailers, consumers, and local, state, and federal agriculture and health officials. The research conducted under this project contributes to the understanding of foodborne pathogen ecology and transmission—including the emergence and spread of antimicrobial resistant bacteria--in fresh and processed foods so that more effective mitigation strategies can be designed and applied at various stages of the farm-to-table continuum.


 


The food industry faces problems that are sufficiently complex to render effective research-based solutions are beyond the scope of any single researchers programmatic outputs. Therefore, these complex issues are most efficiently addressed through multidisciplinary efforts by experts in risk analysis, microbial ecology, epidemiology, food safety microbiology, experimental design, data analysis, and other complementary research areas. This project has been specifically designed to address critical needs of the fresh and processed food industries by developing a thorough understanding of how foods become contaminated with foodborne pathogens and how transmission can be further reduced.


 


Outreach objectives have been developed and integrated into the overall program design to support these research efforts. These objectives include communication of risk-based management recommendations to stakeholders as well as to those who interact with stakeholders. Communication strategies are precisely tailored to farmers, processors, distributors, retailers, and consumers. Message content focuses on risk-based strategies for microbial control deemed critical for each target audience to achieve the greatest strides in improving food safety. Outreach to those who advise producers and consumers (e.g. educators, extension personnel), but who are not part of the project, will be achieved through ongoing professional development opportunities to disseminate key information as outlined in the “Milestones” section.


 


The results of this project will directly impact industries that handle foods most commonly implicated in foodborne disease outbreaks, including low-moisture foods (especially spices, nuts, and dried fruits); fresh, minimally, and shelf-stable processed produce; dairy; fresh and further processed seafood, meat, and poultry products (including fully cooked and ready-to-eat products subject to post-process contamination), as well as other multi-component and processed foods. Moreover, the threats and specific needs for food safety in the food industry are constantly evolving and require continued risk-based solutions in the face of these changes. Therefore, the project proposes risk-based solutions for the effective control of foodborne pathogens across food commodities in the U.S.


The data generated by this project serves as the foundation for the development of predictive models that can be used to better understand pathogen contamination at specific points of food production and for validation of pathogen reduction interventions. Furthermore, this group will work to standardize protocols among laboratories so that research results can be more easily and directly compared. These outcomes will contribute to the long-term profitability and sustainability of the food industry by providing enhanced tools for microbial control and mitigation.


 


Having a mechanism to establish formal collaborations under the umbrella of a single goal will enable scientists in this group to access external funding more successfully than if collaborations were formed ad hoc because of the multi-disciplinary nature of food safety research. Furthermore, the scientists in this project are highly committed to 1) the recruitment of a diverse student population, 2) responsible research conduct, 3) outreach and education to communicate current research, and 4) the advancement of food safety science by keeping one another accountable for their share of results.


 


This multi-state project also proposes integrative and innovative approaches to teaching food safety at the undergraduate and graduate levels. Students will be exposed and trained in the use of modern molecular techniques such as next generation sequencing, metagenomics, and bioinformatics. Partnerships with industry colleagues will allow students to work on current and emerging food safety challenges and to think creatively and critically to solve them.


 


The need for training programs to support the next generation of food safety professionals and to increase the ethnic and cultural diversity among food safety researchers to better reflect the demographic composition of the U.S. population is clear. Greater diversity is critical from the perspective of educational opportunity, but also relative to food safety and public health because various regional and ethnic groups may face different food safety challenges. Cultural and personal sensitivity and competence among food safety professionals is necessary, and the project proposes to train a new generation of food safety students with both a strong technical background and the soft skills needed to help them succeed in their future careers.

Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.