NC_old170: Personal Protective Technologies for Current and Emerging Occupational and Environmental Hazards

(Multistate Research Project)

Status: Inactive/Terminating

Homepage

Occupational workers such as firefighters, first responders, healthcare professionals, military personnel, industrial workers, and agricultural workers who perform their job tasks in hazardous environments often rely on Personal Protective Equipment (PPE) to protect themselves from occupational hazards that can result in workplace injuries and illnesses. The PPE systems they wear for protection offer both functional benefits and challenges. Personal protective equipment (PPE) makes working in hazardous environments possible, yet can interfere with the ability of the worker to perform essential tasks. Research and development of materials and product designs for PPE as well as development of consensus standards are critical to our nation's welfare, security, and ability to compete in a global economy. Providing well designed PPE for occupational workers who face challenging environments is necessary both to increase job effectiveness and preserve the health and well-being of the wearers. The U.S. industries that manufacture protective materials, clothing, and equipment currently lead the world in innovation and production. World class research and development are needed to maintain this position. The development and dissemination of effective PPE requires analysis and research in a wide variety of component areas, including novel functional textile and materials science, advanced materials testing and evaluation, anthropometrics and ergonomics, implementation of textile sensing technologies, garment design and testing, as well as outreach and policy-making. Development, evaluation, and dissemination of PPE has been the focus of the NC-170 research group since 1982, and we have become nationally and internationally recognized for our leadership and contributions to the state of the art in this area.


To date our focus has been on development and testing of functional textiles and protective clothing systems and other wearables.  We aim to continue to innovate broadly in these areas. Our recent focus has been on firefighters, concentrating on protection of the head, hands and feet. The shortcomings of these categories of protective clothing for firefighting can be seen in the statistics: of the 1.13 million firefighters that protected the US in 2014, 63,350 were injured in the line of duty. Between 2007 and 2011, 21% of total injuries were to the leg and foot, 20% to the arm and hand. Thirty eight percent of burns happened to the head, and another 30% to the arm or hand. Forty nine percent of wound, cut, or bleeding injuries happened to the hand or arm, followed by 20% to the head and another 17% to the leg or foot. As job duties and work environments change (for example, firefighter job duties have transformed significantly over the last decades with medical and emergency calls reported in 2011 being nearly four times as frequent as they were in 1980, making up 66% of all fire department calls) protective equipment must similarly adapt to meet new needs (NFPA 2015). Taking into account the needs of firefighters (as evidenced by the statistics presented above) we will continue our research with attention to problems related to protecting the hands, feet, and head.


 Other areas of concern in firefighting include fire induced injury that can occur due to inhalation of toxic and/or heated gases and thermal injury to the skin (Butler, 2014).  Firefighters are exposed to varied risks and dangers that challenge physical well-being in terms of injury, however there is also a critical need to monitor the physical condition of firefighters during each incident due to the effect of these extreme stressors on each responder. The most common causes of on-duty firefighter fatalities from 2010-2014 were heart attack (51.5%) and trauma (23%). In 2014 alone, 56% of firefighter deaths were from sudden cardiac events and 58% resulted from overexertion/stress and medical causes. The number of firefighter deaths from sudden cardiac events has risen in the past year despite stringent medical requirements that must be met by candidates and incumbent members as well as development of firefighter health and fitness program guidelines (NFPA 2015). Physiological injury or death can occur due to cardiovascular stress, exertion, and rise in core temperature. Typically, emergency responders themselves do not respond appropriately to dangerous physiological states due to adrenalin production and dedication to their task interfering with their judgement. Command and medical personnel can make better judgments of firefighter deployment based on physiological responses, but they have no way of monitoring individual emergency responders to determine critical health status. Development of effective sensing and monitoring systems for this purpose will provide a technological solution to this need.


Many of the afore-mentioned PPE professions have similar job hazards to those of firefighters. Our focused research on problems in other hazardous occupations has shown that both similarities and dissimilarities exist in functional needs as well as in issues of failure or lack of performance in PPE. Evaluation of PPE in one use context will often provide valuable insight, background, and expertise that transfers to other domains. Our approach will implement the systems perspective that has produced effective innovation in previous projects to take into account the materials, human factors, design, and dissemination components identified above. The application of our approaches of anthropometric and ergonomic analysis, implementation of new technologies, and community-centric research and outreach will result in significant advances in garment-based PPE as well as protective gear for the feet, hands, and head.


Even as occupational conditions grow increasingly diverse and hazardous, new technologies offer the opportunity to impart increased functionality, wearability, and usability to PPE systems. In materials science, the development of new textiles, fibers, and finishing technologies can better meet the worker’s functional and comfort needs. In anthropometrics and ergonomic analysis, body scanning and motion capture technology can bring increased speed, accuracy, and insight into the development of design parameters, the design of new systems, and the evaluation of garments and related equipment. In garment design, smart materials and electronic components can impart novel functionality to PPE systems and allow the wearer’s health and safety status and needs to be monitored continuously to inform system functions or oversight. In policy making and enforcement, developing standards (e.g. ASTM, ISO) for design, evaluation procedures, performance, and care of PPE can ensure harmonized requirements and ultimately increased safety across all units within an occupation. Continued research into the development of methodologies to effectively and reliably measure functional properties of both materials and garment systems to inform standards that will ensure that appropriate protection is provided by the PPE, as well as information on the use and care of these items to maintain their effectiveness, will result in systems with proven effectiveness. 


 Our group is uniquely positioned to address problems associated with PPE from multidisciplinary approaches. We are comprised of members with a wide variety of areas of expertise and of research backgrounds. We have an established track record of successful collaboration, both internally and with community/user groups and external research partners. We have accumulated an impressive array of cutting-edge research equipment and research facilities, and have developed expertise in the implementation of new technologies to further the state of the art in PPE. The approaches we have developed leverage our collaborative skills and our technologies to address the design, development, and dissemination of PPE technologies in a process that looks at 1) barriers to acceptance and use of PPE, 2) design, development and testing of PPE materials and technologies, 3) development of performance standards for PPE, and 4) development of novel textiles, materials, and functionality for PPE. We will identify new opportunities for research and development in PPE for firefighters, first responders, law enforcement officers, military personnel, pesticide operators, and healthcare workers through foundational and empirical research on under-investigated areas of the human body and its relationship with PPE. We will address these identified opportunities to assess and improve protection and human factor performance of PPE through research and product development. We will communicate, standardize, and validate these findings through the development of research-based performance guidelines for PPE.

Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.