NC_old1183: Mycotoxins: Biosecurity, Food Safety and Biofuels Byproducts (NC129, NC1025)

(Multistate Research Project)

Status: Active


The need, as indicated by stakeholders, and likely impacts from completion of the

Grain and livestock producers need to minimize mycotoxin contamination of food,
forage, and feed, and reduce the deleterious effects of mycotoxins on consumers
and livestock. In recent years, the presence of mycotoxins in the solid byproduct of
grains processed for biofuels, known as distillers grain (DG), has also become an
important issue. The sale of DGs for animal feed has become an important source of
supplemental income for biofuel producers. For grain buyers and food processors,
the primary need is a reliable method for rapid assessment of grain quality
pertaining to mycotoxins and mycotoxigenic fungi. Rapid methods to detect
mycotoxins at the first points of sale (elevators), as well as methods to detect
mycotoxigenic fungi in the commodity (e.g. DON-producing Fusarium in barley),
would prevent these stakeholders from purchasing corn contaminated with
unacceptable levels of aflatoxins and fumonisins, or wheat with excessive
concentrations of deoxynivalenol (DON), e.g. Additionally, cost-effective methods to
predict, monitor, and minimize mycotoxin production in the field, and to detoxify
mycotoxins and prevent further deterioration in contaminated feed, are needed by
producers of grain and livestock. The lowering of tolerance limits for mycotoxins in
overseas markets has increased the burden for grain buyers and food processors;
currently, levels of mycotoxins that are acceptable for some US products are
unacceptable in European and Asian markets, resulting in non-tariff trade barriers.
New methods to monitor and treat contaminated grain would benefit domestic
consumers, and would also allow American commodities to compete more
effectively in foreign markets. Finally, workers who are responsible for animal and
human health need information about the toxicity, carcinogenicity, modes of action,
and biomarkers of exposure and disease for all categories of mycotoxins. This
information would be used to train health-care providers to identify exposure and
treat related disease, as well as to develop accurate risk assessment

The importance of the work, and consequences if it is not done

Mycotoxins are a serious, chronic problem throughout the cereal- and forage-
producing regions of the U.S. (e.g., see
v=JEysXbJisf0). If research is not applied broadly to address this problem, serious
negative consequences will result. First, the presence of mycotoxins is an important
health hazard. Accurate hazard assessments are essential in order to maintain
exposures by animal and human consumers within safe limits. We propose basic
research to define the toxicity of several important mycotoxins. Without this
information, it is impossible to assess the risks associated with these mycotoxins.
Additionally, the presence of mycotoxins in grain is an economic concern, especially
in the context of global markets. Without an aggressive research program to
prevent, treat, and contain outbreaks of mycotoxins in grain, U.S. grain producers
suffer the consequences of reduced marketability of their products. Furthermore,
the proposed research addresses biosecurity concerns. The natural occurrence of
mycotoxins in grain is an important security concern for producers and end-users of
the grain; mycotoxins have been used as agents of terrorism, e.g. aflatoxin in Iraq.
Without a proactive research program to find innovative ways to monitor, prevent,
and treat mycotoxin contamination of grains and forage, US agriculture will be
unprepared to deal effectively with a mycotoxin outbreak, regardless of its origin.
Finally, the production of mycotoxins by mycotoxigenic fungi in grains and forage
represents a continuing problem in agriculture. Improving our understanding of
factors relevant to allowing these fungi to colonize their hosts, and how mycotoxin
biosynthesis is regulated, will not only lead to novel treatment strategies, but will
also advance our understanding of fungal pathogenesis in general.

The advantages for doing the work as a multistate effort and the technical feasibility
of the research.

The scientists involved in this multistate, multidisciplinary research proposal work
individually on mycotoxin issues related to their respective disciplines and areas of
expertise. Just as agriculture is diverse and varies greatly from state to state (and in
many instances, within a given state), the occurrence and severity of mycotoxin
outbreaks vary widely across the US. A multistate effort ensures a thorough
approach to investigate a complex and highly variable phenomenon that has
significant impacts on both producers and consumers. Due to the wide range of
experience and expertise of the group, the proposed research should be technically

What the likely impacts will be from successfully completing the work

The work will address the needs of the stakeholders. Outputs will include
information on the action of mycotoxins in livestock and animal models. This
information will be applicable to the risk assessment process. The work will also
address stakeholders' continuing need for new detection and monitoring methods
for grain, DGs, and forages. Information will be generated to address the need for
management practices that help prevent mycotoxin-related problems during grain
and forage production, handling, storage, processing, and consumption. Finally, we
will generate important basic knowledge about major groups of mycotoxigenic
fungi, and the biochemical and molecular factors that regulate the biosynthesis of
aflatoxins, endophyte alkaloid toxins, and Fusarium-associated mycotoxins
including deoxynivalenol, fumonisins, and zearalenone. This will reveal critical
points in the regulation where targeted controls can be developed.
Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.