NE1443: Biology, Ecology & Management of Emerging Disease Vectors

(Multistate Research Project)

Status: Inactive/Terminating

Homepage

The need. Despite ongoing extraordinary medical advances infectious diseases are on the rise worldwide and account for a quarter of all human mortality and morbidity. Diseases once thought to menace only remote tropical inhabitants are now spreading everywhere, fueled by international travel. Of particular concern are arthropod-borne diseases. After the recent West Nile virus epidemic that swept through the US within 5 years impacting thousands and killing many, there has been a recent confirmed case of locally-transmitted dengue fever in New York, as well ongoing epidemics in Texas and Florida. Additionally, for the first time in the Western Hemisphere, local transmission of chikungunya has been detected in the Caribbean with over 5,000 confirmed cases of chikungunya since the fall of 2013 (Anon. 2014a). Experts predict local epidemics of chikungunya in the USA within two years. Dengue, chikungunya virus and other mosquito-borne pathogens can be deadly to humans and there are no vaccines or therapeutic drugs. Vector avoidance and control remain our only means against disease spread. In addition to pathogen spread, medically important arthropods are establishing and spreading in the USA, with recent examples that include the Yellow Fever mosquito (Aedes aegypti) and the Asian Tiger mosquito Ae. albopictus (Rochlin et al. 2013), both reported in California within the last two years. Furthermore, new mosquitoes are also arriving, such as Ae. j. japonicus, a cold weather adapted mosquito that is becoming increasingly common in the urban and suburban USA (Kaufman & Fonseca 2014).



While outbreaks of mosquito-borne arboviruses pose serious risks to the public, tick-borne diseases are the most common vector-borne diseases in the USA. Blacklegged ticks (Ixodes scapularis) are the primary vectors of most of these pathogens, including Lyme Disease. Every year, there are over 20,000 confirmed cases of Lyme disease, and CDC has recently noted that this is likely a 10 fold underestimate. In addition, many new tick borne pathogens have emerged in the past 20 years. Confirmed cases of human anaplasmosis (first described in the 1990’s) now exceed 1000/year in the Upper Midwest, with an additional focus on the east coast. Other pathogens, while still rare, are also associated with rising incidence of human disease. These include human babesiosis and new bacterial pathogens such as an agent closely related to Ehrlichia muris (Pritt et al. 2011) and an undescribed species of Borrelia. Tick-borne viruses are also a concern. Human infections with Powassan/deer tick virus have been steadily increasing, frequently causing mortality and serious disability (Khoury et al. 2013). In, 2012 a tick borne virus (Heartland virus) was first described in Missouri (McMullan et al. 2012). The suspected vector is the Lone star tick, Amblyomma americanum. This virus, new to the Western Hemisphere has caused illness in 8 humans and one death as of March 2014. The changing patterns of tick-borne disease reflect the fact that tick species (such as Ixodes scapularis and Amblyomma americanum) are expanding their range, and tick population sizes are increasing. Ecological changes, including increases in the populations of wildlife reservoirs, altered climate, and changes in forest and landscape features are clearly important contributing factors. In the near term, these changes will likely lead to an even greater burden on human health with continuing increases in Lyme disease as well as other tick borne infections.



Encouragingly, important advances are being made in areas that include new methods and tools for monitoring and controlling mosquitoes and ticks. However, the budgets for research and abatement programs have been substantially reduced. Thus, improved information sharing and coordination will result in better decisions in applying the limited resources, standardization of monitoring and control tools and teams able to better compete for limited funding resources.



The availability of vector resources (laboratory colonies, cell cultures, pathogen strains) are critical components for investigations to prevent the spread of pathogens by vectors. The aim of this project area is to support and promote available resources such as the BEI Resources established by the National Institute of Allergy and Infectious Diseases (NIAID) for human pathogens and to identify alternative sources for vector resources beyond those found in BEI.



The importance of the work and consequences if not done. Arboviruses are the most significant cause of mosquito-borne disease in the U.S. Arboviral infections often result in encephalitis, a brain inflammation which can result in death or severe neurologic after-effects. U.S. mosquitoes transmit several serious endemic encephalitic viruses including St. Louis, LaCrosse, Venezuelan, and eastern and western equine encephalitis. There are no vaccines, antibiotics, or treatments for viral encephalitis. Mitigation centers on controlling the mosquito vectors.



The introduction and rapid dispersal of mosquito-borne West Nile virus (WNV) has effectively demonstrated the infectious threat posed by arboviruses. WNV is merely the latest in a series of infectious viruses of national public health significance to be introduced into the United States. This virus swept across the country following its appearance in New York in 1999, and the disease is now endemic in the continental 48 states. The outbreak constituted the largest documented epidemic of mosquito-borne meningoencephalitis in the history of the western hemisphere. Although principally a disease of birds (explaining its swift dispersal), nearly 40,000 people in the U.S. have become infected with WNV with 1,610 deaths recorded to date. The elderly and children are at particular risk of developing serious illness. In addition to human cases, WNV has had an important impact on livestock also. For example, 26,918 equine cases have been reported in the USA, between 1999 and November 13, 2013 (Anon. 2014b).



The U.S. will continue to experience the arrival of new arboviral diseases. Consider chikungunya virus, a deadly infectious disease that causes crippling arthritic damage to survivors. The virus has infected more than 10 million people in the Indian Ocean region in a massive eruption since 2001. Closer to home, ten cases were reported in December 2013 in St. Martin in the Caribbean, the first time chikungunya was reported in the western hemisphere. By early May 2014, over 5,000 confirmed cases in the Caribbean have been reported (Anon. 2014a). Even before this new threat, nearly a dozen U.S. states have reported cases of travelers infected with chikungunya virus that returned from Asia and East Africa. Ultimately, infectious patient will meet competent vector and the disease will undergo establishment, amplification, and dispersal. The U.S. not only is a travel and immigrant destination but also has highly competent vectors. Or consider dengue, currently the predominant worldwide mosquito-borne viral disease in humans. Dengue is endemic in >100 countries and infects 100 million persons each year with 2.5 billion at risk. The World Health Organization has reported a 30-fold incidence increase in dengue over the past 50 years. Finally, Rift Valley fever virus (RVFV) (Pepin et al. 2010), is an arbovirus currently epidemic in Africa that due to its high morbidity and mortality if introduced into the US would have a tremendous impact on livestock and man. Again, mosquito vectors are already abundant in the USA (Xue et al. 2013).



The economic impact of mosquito-borne illness is devastating. The cost of treating WNV infections has been immense, with Louisiana estimating $70 million for 2002 alone. The estimated cost per human case of eastern equine encephalitis (EEE) is $3 million. EEE and WNV both threaten the nation’s multi-billion dollar equine industry. The mortality rate of horses infected with WNV is 34 percent; the rate for those with EEE approaches 100 percent. In 2000, the estimated loss in New Jersey due to equine cases of WNV was $6 million. Tourism, which increases human exposure to mosquitoes, is similarly impacted by outbreaks of mosquito-borne disease. This was effectively demonstrated in 1959 in New Jersey, when 21 out of 32 infected people died during an EEE outbreak, resulting in tourism coming to a near standstill. Since the discovery of EEE virus in the 1930s, outbreaks in temperate regions have been sporadic, both temporally and spatially, highly focal, and largely unpredictable. However, over the last decade, we have witnessed a sustained resurgence of EEE virus activity within long-standing foci in the northeastern US and unprecedented northward expansion into new regions where the virus had been historically rare or previously unknown, including northern New England and eastern Canada. This has resulted in severe disease in humans (46 cases with 16 fatalities) and domestic animals (173 cases). The factors responsible for reemergence of EEE are largely unknown but are likely complex reflecting ongoing changes in the ecology and epidemiology of this virus that may be exasperated with global climate change.



The lessons learned from WNV and the threat posed by additional new and emerging arboviruses serve as an impetus for bolstering U.S. vigilance against insect-borne diseases (Anyamba et al. 2014), particularly when we consider their potential to be used by terrorists (Tabachnick et al. 2011). The U.S. requires research and outreach capabilities that provide answers to preventing and controlling outbreaks of arboviruses and other pathogens transmitted by mosquitoes.



We are proposing 5 key emphasis areas for this Multistate project: (1) development of parasitic arthropod catalogue/resources; (2) integrated tick management and community-centered approaches, including understanding the biology and ecology of novel and emerging tick-borne pathogens; (3) Ae. albopictus and Ae. aegypti, with a focus on surveillance, invasion ecology, genetics; (4) new control tools, including socio-ecological approaches; and (5) new training and training tools. Each of these areas is important and can be most effectively and efficiently addressed in a larger multistate context.



The technical feasibility of the research. Our research will focus on genetic and ecological studies of mosquitoes and ticks. The targeted vectors include Ae. aegypti, Ae. albopictus and Cx. pipiens, which are three of the most important mosquito vectors nationally and Ae. j. japonicus, the newest arrival to the US and a model of rapid evolution and changing vectorial capacity in an exotic disease vector. Our tick projects will focus on I. scapularis and A. americanum. Research will also evaluate new monitoring and control tools and methods, targeting the identification, treatment and elimination of vectors within different locations and ecological contexts. The proposed research is technically feasible, but only if done by a coordinated team. Our committee is composed of top entomologists in the US who study vector and pathogen biology, with the required experience and facilities. Thus, we are confident we can succeed with the proposed research.



The advantages for doing the work as a multistate effort. This work cannot be completed without a multistate effort. In a rapidly-changing landscape, the experience and guidance of one region is critical to others. As a specific example, both Ae. aegypti and Ae. albopictus have recently established in California, and California abatement districts have benefited from the experience of those in the east coast states where these species are often common. Ae. albopictus has also only become entrenched and abundant in New York and Connecticut in the last 5 years. Both states have unique ecology, geography, and socioeconomic settings that will require customization of surveillance, education and control strategies developed in other regions. Conversely, other researchers bring to the table experience working with populations afflicted with dengue, a set of skills that will likely be needed more broadly across the USA. Research on ticks and tick-borne pathogens is lagging behind efforts directed towards mosquitoes, likely a reflection of their much more recent emergence.



Participants in this project represent a diverse group of scientists from Universities as well as federal and state government institutions conducting a broad range of research on vectors of human and animal pathogens. The institutional knowledge of this group as both users and holders of vector resources will be essential for achieving the stated objectives.



What the likely impacts will be from successfully completing the work. The project seeks to build an interactive and interdependent network of scientific expertise to deal with expanding/invasive tick and mosquito species and mosquito-borne disease outbreaks. The project will affect all U.S. residents by understanding, assessing, and mitigating the threat posed by mosquitoes of public health importance. Further, we anticipate enhanced ability to detect and predict outbreaks of vectors and associated diseases. The project further provides for and encourages environmentally sound, scientifically based, and professional control by mosquito control agencies. We are requesting an extension of the project for another 5 years. Since 2010, we have met and exchanged published and unpublished results and have vetted ideas from group participants. We are now ready to start developing collaborative proposals for federal funds. In addition, some of our activities, such as the development of an arthropod catalogue, will result in enhanced visibility on the availability of vector resources for human and animal pathogens.

Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.